Air Quality Forecasting - How accurate can it be?

Posted on March 23rd 2015
ចែករំលែក: aqicn.org/faq/2015-03-23/air-quality-forecasting-how-accurate-can-it-be/km/

STRONG LAPSE CONDITION (LOOPING)

WEAK LAPSE CONDITION (CONING)

INVERSION CONDITION (FANNING)

Examples of Atmospheric Stability (attribution)

In weather prediction, forecast models are used to predict future states of the atmosphere, based on how the climate system evolves with time from an initial state.

While the forecast models are quite complex (and do require strong scientific and engineering capabilities), the science of analyzing those forecast models, and verifying their accuracy, by comparing actual empirical observations to predicted values, is quite straightforward.

For the domain of Air Quality, just like for weather prediction, it is possible to define models used to predict the future set of atmospheric pollution. There are actually plenty of such models, often referred as Atmospheric Dispersion Modeling. And just like weather prediction, the same concept of accuracy analysis can be applied to Atmospheric pollution predictions.

This article is the first of a series on Air Quality forecasting.


--

PM2.5 air pollution forecast is already available on the World Air Quality Index project for Asia, Europe as well as the whole world.

But the data used to feed the forecast models is mostly based on satellite observation (see this article) rather than terrestrial stations readings.

Using satellite data has the advantage of being able to cover any part of the globe, including oceans, provided there are no cloud. But, on the other hand, satellite data is also inherently less accurate, and only available twice a day, compared to 24 times (every hour) for terrestrial observations. Considering the dynamics of Air Pollution in Asia, having only two readings a day might introduced a significant true forecast error in the prediction, following Rosanne Cole's classification[2]:

An observed forecast error may contain data errors of two kinds: (1) measurement errors in the data used to construct the forecast and (2) measurement error in the realized value. Data errors of the first kind will be a component of the true forecast error

Error of type 2 are related to the dispersion model used for the forecast. Since different models are used for the different countries and continents (this is currently the case for the World Air Quality Index project), the accuracy analysis needs to be done for each of the model. So, to start with, this article will focus on the model used for the Asian continent. In later post, we will extend the analysis to more continents.


--

Back to the initial question about the forecast accuracy, one last item to be considered in the analysis in the how far in advance the forecast in computer. The less in the advance, the more accurate the model is likely to be. So, just to start with, the following analysis graphs are based on "day +1" forecast (e.g. forecast for the next day, or if you are a Tuesday, then the forecast is for the Wednesday).

There are several ways of representing the accuracy, the most obvious one being a simple number representing percentage of forecast matching the actual observation. But because we do believe that graphic visualization are much more powerful than numbers, we prefer to present the superposed forecast/observation matching for several cities in Asia. The squares at the top are the empirical observations and the one at the bottom the foretasted values.

By checking all the graphs below, one can notice quite disappointing results for Guangzhou, Chengdu and South Korea... to the extent that the model in use for Asia could almost be disqualified for public usage. This is something that we will be writing in the second post of this series on Air Quality Forecasting.


--

Forecast advance:


--

Some interesting links for those interested to read about about forecast accuracy:

Click here to see all the FAQ entries
  • AQI Scale: What do the colors and numbers mean?
  • Using Statistical Distances for Real-time Sensor Networks Validation
  • Nitrogen Dioxyde (NO2) in our atmosphere
  • អំពីគុណភាពខ្យល់ និងការវាស់វែងការបំពុល៖

    អំពីកម្រិតគុណភាពខ្យល់

    -តម្លៃសន្ទស្សន៍គុណភាពខ្យល់ (AQI)Levels of Health Concern
    0 - 50ល្អគុណភាពខ្យល់ត្រូវបានចាត់ទុកថាពេញចិត្តហើយការបំពុលបរិយាកាសបង្កឱ្យមានហានិភ័យតិចតួចឬគ្មាន
    51 -100មធ្យមគុណភាពខ្យល់អាចទទួលយកបាន។ ទោះជាយ៉ាងណាក៏ដោយចំពោះការបំពុលមួយចំនួនវាអាចមានការព្រួយបារម្ភខាងសុខភាពក្នុងកម្រិតតិចតួចចំពោះមនុស្សតិចតួចដែលងាយទទួលរងការបំពុលខ្យល់។
    101-150Unhealthy
    for sensitive groups
    សមាជិកនៃក្រុមរសើបអាចជួបប្រទះផលប៉ះពាល់សុខភាព។ សាធារណជន​ទូទៅ​មិន​ទំនង​ជា​រង​ផល​ប៉ះពាល់​ទេ។
    151-200មិនល្អមនុស្សគ្រប់រូបអាចចាប់ផ្តើមមានផលប៉ះពាល់ដល់សុខភាព។ សមាជិកនៃក្រុមដែលប្រកាន់អក្សរតូចធំអាចមានផលប៉ះពាល់សុខភាពធ្ងន់ធ្ងរបន្ថែមទៀត
    201-300មិនល្អខ្លាំងការព្រមានអំពីសុខភាពនៃស្ថានភាពគ្រាអាសន្ន។ ប្រជាជនទាំងមូលទំនងជារងផលប៉ះពាល់។
    300+គ្រោះថ្នាក់ការប្រុងប្រយ័ត្នផ្នែកសុខភាព: មនុស្សគ្រប់រូបអាចមានផលប៉ះពាល់ធ្ងន់ធ្ងរលើសុខភាព

    ដើម្បីដឹងបន្ថែមអំពីគុណភាពខ្យល់ និងការបំពុល សូមពិនិត្យមើល ប្រធានបទគុណភាពខ្យល់ wikipediaមគ្គុទ្ទេសក៍ airnow អំពីគុណភាពខ្យល់ និងសុខភាពរបស់អ្នក

    សម្រាប់ដំបូន្មានសុខភាពដ៏មានប្រយោជន៍របស់វេជ្ជបណ្ឌិតទីក្រុងប៉េកាំង Richard Saint Cyr MD សូមពិនិត្យមើលប្លក់ www.myhealthbeijing.com


    សេចក្តីជូនដំណឹងអំពីការប្រើប្រាស់: ទិន្នន័យគុណភាពខ្យល់ទាំងអស់មិនត្រូវបានគេប៉ាន់ស្មាននៅពេលបោះពុម្ភផ្សាយនោះទេហើយដោយសារតែការធានាគុណភាពនេះទិន្នន័យទាំងនេះអាចត្រូវបានកែប្រែដោយគ្មានការជូនដំណឹងគ្រប់ពេលវេលា។ គម្រោងសន្ទស្សន៍គុណភាពខ្យល់អាកាសពិភពលោកបានអនុវត្តនូវជំនាញនិងការថែទាំដែលសមស្របទាំងអស់ក្នុងការចងក្រងមាតិកានៃព័ត៌មាននេះហើយក្នុងករណីណាក៏ដោយក្រុមការងារគម្រោងសន្ទស្សន៍គុណភាពខ្យល់អាកាសពិភពលោកឬភ្នាក់ងាររបស់វាត្រូវទទួលខុសត្រូវលើកិច្ចសន្យាខូចខាតឬបើមិនដូច្នោះទេសម្រាប់ការបាត់បង់របួសឬខូចខាត ដែលកើតឡើងដោយផ្ទាល់ឬដោយប្រយោលពីការផ្គត់ផ្គង់ទិន្នន័យនេះ។



    Settings


    Language Settings:


    Temperature unit:
    Celcius