एयरनेट सेंसर डेटा गुणवत्ता सत्यापन सेवा में आपका स्वागत है।
Station: จุดเฝ้าระวังฝุ่น PM ต.เหมืองจี้ อ.เมือง บ้านฝั่งหมิ่น จ.ลำพูน, Ban Fang Min, Thailand also known as "Chiang Mai Univ CCDC n-138"पर स्थित "Ban Ophopo Huai Som, Ban Fang Min, Tha Khum Ngoen, Lamphun Province, Thailand".
--
सेंसर डेटा सत्यापन, स्टैंडअलोन सेंसर डेटा (जब सेंसर मिनट-स्तर का डेटा उत्पादित कर रहा हो) और तुलनात्मक डेटा (जब सेंसर अन्य सेंसर के साथ सह-स्थित हो) दोनों को देखकर किया जाता है।
स्टैंडअलोन डेटा गुणवत्ता
डेटा गुणवत्ता के उच्चतम स्तर को सुनिश्चित करने के लिए, सिग्नल टू नॉइज़ अनुपात (एसएनआर), जिसे प्रति घंटा रीडिंग से भिन्नता के गुणांक के रूप में परिभाषित किया गया है, अपेक्षाकृत कम (33% से नीचे) होना चाहिए।
10% से अधिक एसएनआर वाला कोई भी माप गलत सेंसर रीडिंग (जैसे दोषपूर्ण पंखा या धूल जमा होना) के कारण पक्षपाती हो सकता है।
तुलनात्मक डेटा गुणवत्ता
सह-स्थित सेंसर के साथ सेंसर डेटा की तुलना करने के लिए, "डेटा रीडिंग कॉन्फिडेंस ज़ोन" ग्राफ का उपयोग किया जाता है, जहां लाल रेखा सेंसर से प्रति घंटे की रीडिंग को दर्शाती है, जबकि हरी रेखा स्टेशन पड़ोसियों की प्रति घंटे की रीडिंग के मध्यिका को दर्शाती है।
हरे रंग से भरा क्षेत्र विश्वास क्षेत्र का प्रतिनिधित्व करता है, जो पड़ोसी स्टेशनों के मानक विचलन के 3 गुना के बराबर है।
हर बार जब स्टेशन की प्रति घंटा रीडिंग आत्मविश्वास क्षेत्र से ऊपर चली जाती है, तो स्टेशन को असामान्य रीडिंग उत्पन्न करने वाला माना जाता है।
प्रति घंटा रीडिंग और कॉन्फिडेंस ज़ोन के बीच जितना बड़ा अंतर होगा, उतनी अधिक संभावना होगी कि स्टेशन को अमान्य डेटा उत्पन्न करने वाला माना जाएगा।
सूत्र को इस प्रकार परिभाषित किया गया है:
P=probability, D=distance and W=P*D
जहां 'i' को पिछले 3 दिनों के डेटा में दोहराया गया है और 'n' उन पिछले 3 दिनों के दौरान नमूनों की संख्या है (संभवतः n = 24*3)।
यदि W>30, तो स्टेशन स्वचालित रूप से अक्षम हो जाता है।
आगे के प्रश्न
यदि आपका कोई प्रश्न या टिप्पणी है, तो नीचे दिए गए फॉर्म का उपयोग करके हमें एक संदेश भेजें: