AirNet সেন্সর ডেটা গুণমান যাচাই পরিষেবাতে স্বাগতম৷
Station: COBACH, Mexicali, Mexico also known as "Gobierno del Estado de Nuevo León, México 39"অবস্থিত "Cobach plantel baja, Avenida Checoslovaquia, Mexicali, Municipio de Mexicali, Baja California, 21000, Mexico".
--
সেন্সর ডেটা যাচাইকরণটি স্বতন্ত্র সেন্সর ডেটা (যখন সেন্সর মিনিট-স্তরের ডেটা তৈরি করে) এবং তুলনামূলক ডেটা (যখন সেন্সরটি অন্যান্য সেন্সরগুলির সাথে সহ-অবস্থিত থাকে) উভয়ই দেখে করা হয়।
স্বতন্ত্র ডেটা গুণমান
সর্বোচ্চ স্তরের ডেটা মানের নিশ্চিত করার জন্য, সংকেত থেকে শব্দ অনুপাত (SNR), যা ঘন্টায় রিডিং থেকে ভিন্নতার সহগ হিসাবে সংজ্ঞায়িত করা হয়, তুলনামূলকভাবে কম (33% এর নিচে) হওয়া উচিত।
ভুল সেন্সর রিডিং (যেমন ত্রুটিপূর্ণ ফ্যান বা ধুলো জমে) এর কারণে ক্রমাগত 10% এর বেশি SNR সহ যেকোনো পরিমাপ পক্ষপাতদুষ্ট হতে পারে।
তুলনামূলক ডেটা গুণমান
সহ-অবস্থিত সেন্সরের সাথে সেন্সর ডেটা তুলনা করার জন্য, "ডেটা রিডিং কনফিডেন্স জোন" গ্রাফটি ব্যবহার করা হয়, যেখানে লাল রেখাটি সেন্সর থেকে প্রতি ঘন্টার রিডিংকে প্রতিনিধিত্ব করে, যেখানে সবুজ রেখাটি প্রতি ঘন্টার রিডিংয়ের মধ্যমাকে প্রতিনিধিত্ব করে। স্টেশন প্রতিবেশী।
সবুজে ভরা জোনটি আস্থা জোনকে প্রতিনিধিত্ব করে, প্রতিবেশী স্টেশনগুলির 3 গুণের মান বিচ্যুতির সমান।
প্রতিবার স্টেশন প্রতি ঘণ্টায় রিডিং কনফিডেন্স জোনের উপরে চলে গেলে, স্টেশনটি অস্বাভাবিক রিডিং তৈরি করে বলে মনে করা হয়।
ঘন্টায় রিডিং এবং কনফিডেন্স জোনের মধ্যে পার্থক্য যত বেশি হবে, স্টেশনটিকে অবৈধ ডেটা তৈরি করার সম্ভাবনা তত বেশি।
সূত্রটি সংজ্ঞায়িত করা হয়েছে:
P=probability, D=distance and W=P*D
যেখানে 'i' গত 3 দিনের ডেটাতে পুনরাবৃত্তি করা হয়েছে এবং 'n' হল সেই গত 3 দিনের নমুনার সংখ্যা (সম্ভবত n = 24*3)।
যদি W>30, স্টেশনটি স্বয়ংক্রিয়ভাবে নিষ্ক্রিয় হয়।
আবারও কোন প্রশ্ন করা
আপনার কোন প্রশ্ন বা মন্তব্য থাকলে, নীচের ফর্ম ব্যবহার করে আমাদের একটি বার্তা পাঠান: