Air Quality Forecasting - How accurate can it be?

Posted on March 23rd 2015
Share: aqicn.org/faq/2015-03-23/air-quality-forecasting-how-accurate-can-it-be


STRONG LAPSE CONDITION (LOOPING)

WEAK LAPSE CONDITION (CONING)

INVERSION CONDITION (FANNING)

Examples of Atmospheric Stability (attribution)
In weather prediction, forecast models are used to predict future states of the atmosphere, based on how the climate system evolves with time from an initial state. While the forecast models are quite complex (and do require strong scientific and engineering capabilities), the science of analyzing those forecast models, and verifying their accuracy, by comparing actual empirical observations to predicted values, is quite straightforward.

For the domain of Air Quality, just like for weather prediction, it is possible to define models used to predict the future set of atmospheric pollution. There are actually plenty of such models, often referred as Atmospheric Dispersion Modeling. And just like weather prediction, the same concept of accuracy analysis can be applied to Atmospheric pollution predictions. This article is the first of a series on Air Quality forecasting.

--

PM2.5 air pollution forecast is already available on the World Air Quality Index project for Asia, Europe as well as the whole world. But the data used to feed the forecast models is mostly based on satellite observation (see this article) rather than terrestrial stations readings. Using satellite data has the advantage of being able to cover any part of the globe, including oceans, provided there are no cloud. But, on the other hand, satellite data is also inherently less accurate, and only available twice a day, compared to 24 times (every hour) for terrestrial observations. Considering the dynamics of Air Pollution in Asia, having only two readings a day might introduced a significant true forecast error in the prediction, following Rosanne Cole's classification[2]:
An observed forecast error may contain data errors of two kinds: (1) measurement errors in the data used to construct the forecast and (2) measurement error in the realized value. Data errors of the first kind will be a component of the true forecast error
Error of type 2 are related to the dispersion model used for the forecast. Since different models are used for the different countries and continents (this is currently the case for the World Air Quality Index project), the accuracy analysis needs to be done for each of the model. So, to start with, this article will focus on the model used for the Asian continent. In later post, we will extend the analysis to more continents.

--

Back to the initial question about the forecast accuracy, one last item to be considered in the analysis in the how far in advance the forecast in computer. The less in the advance, the more accurate the model is likely to be. So, just to start with, the following analysis graphs are based on "day +1" forecast (e.g. forecast for the next day, or if you are a Tuesday, then the forecast is for the Wednesday).

There are several ways of representing the accuracy, the most obvious one being a simple number representing percentage of forecast matching the actual observation. But because we do believe that graphic visualization are much more powerful than numbers, we prefer to present the superposed forecast/observation matching for several cities in Asia. The squares at the top are the empirical observations and the one at the bottom the foretasted values.


By checking all the graphs below, one can notice quite disappointing results for Guangzhou, Chengdu and South Korea... to the extent that the model in use for Asia could almost be disqualified for public usage. This is something that we will be writing in the second post of this series on Air Quality Forecasting.


--

Forecast advance:


--

Some interesting links for those interested to read about about forecast accuracy:


Click here to see all the FAQ entries
  • Nitrogen Dioxyde (NO2) in our atmosphere
  • Ozone AQI Scale update
  • Kriging Interpolation




  • comments powered by Disqus

    Về phép đo chất lượng không khí và mức độ ô nhiễm:

    Về các thang đo chất lượng không khí

    -Giá trị chỉ số chất lượng không khí (AQI)Mức độ ảnh hưởng sức khỏe
    0 - 50tốtChất lượng không khí được coi là đạt tiêu chuẩn, và ô nhiễm không khí không gây ra rủi ro hoặc rất ít
    51 -100trung bìnhChất lượng không khí ở mức chấp nhận được; Tuy nhiên, một số chất gây ô nhiễm có thể gây ra ảnh hưởng đến sức khỏe của một nhóm nhỏ những người nhạy cảm với không khí ô nhiễm.
    101-150Không lành mạnh cho các nhóm người nhạy cảmNhóm người nhạy cảm có thể bị ảnh hưởng sức khỏe. Phần lớn người dân không có nguy cơ bị ảnh hưởng sức khỏe.
    151-200Có hại cho sức khỏeTất cả mọi người có thể bắt đầu bị ảnh hưởng đến sức khỏe; Những nhóm người nhạy cảm có thể bị ảnh hưởng sức khỏe nghiêm trọng hơn
    201-300rất có hại cho sức khỏeCảnh báo nguy hại sức khỏe nghiêm trọng. Đa số mọi người đều bị ảnh hưởng.
    300+Nguy hiểmCảnh báo sức khỏe: tất cả mọi người có thể bị ảnh hưởng đến sức khỏe một cách nghiêm trọng

    Để biết thêm về ô nhiễm và chất lượng không khí , xem wikipedia chất lượng không khí đang đề hoặc hướng dẫn về chất lượng không khí và sức khỏe của bạn .

    Để biết những lời khuyên về sức khỏe rất hữu ích của bác sĩ y khoa Richard Saint Cyr ở Bắc Kinh, xem www.myhealthbeijing.com blog.


    Usage Notice: All the Air Quality data are unvalidated at the time of publication, and due to quality assurance these data may be amended, without notice, at any time. The World Air Quality Index project has exercised all reasonable skill and care in compiling the contents of this information and under no circumstances will the World Air Quality Index project team or its agents be liable in contract, tort or otherwise for any loss, injury or damage arising directly or indirectly from the supply of this data.



    Cài đặt


    Cài đặt ngôn ngữ:


    Temperature unit:
    Celcius